WG1/WG2 Joint experimental detector talks summary

(Walter/Choubey/Schwetz/McFarland/Nieves/Hayato)

- Status of MIND Simulation and Analysis A. Laing
- TASD M. Ellis
- R&D Towards huge liquid Argon Detectors T. Maruyama
- Event Reconstruction in LAr TPCs O. Palamara
- Proton Identification in future WC detectors C. Walter
- Liquid Scintillator detectors for high energy neutrinos S. Smith
- Peanut at FNAL A. Russo
- Neutrino beam flux systematics L. Loiacono

Chris Walter Duke University NuFact09 IIT July 25th 2009

New Detectors, New Techniques

- This session focused on work and simulations for new detectors that would be used in neutrino factories and beta beams.
- This included continuing work on MIND and TASD including the first simulation and reconstruction work package for MIND.
- New progress in detector R&D for Lar
- There are some brand new ideas presented in this meeting along with new techniques for addressing problems.
- I will point out some highlights.

MIND

From Laing

Baseline Detector for golden channel measurement at the neutrino factory

NUANCE

GEANT4

Full digitization

RecPack

ROOT

LAST YEAR: Start of reconstruction code.

THIS YEAR: First analysis chain running with preliminary results.

From Ellis

TASD Detector

THIS YEAR: New simulations + systematic scanning by A team of people for efficiency, curvature etc.

LAST YEAR: Start of eye scanning for curvature.

Homework: Check in systematic way.

New Homeworks: Make automatic algorithms.

Is this charge ID good enough for platinum?

Big Progress in LAR R&D!

GEM Gas Argon SkV/cm Liquid Ar 1 kV/cm

Double phase

Ionization
electric
Field
Cherenkov light
Charged
particle
Scintillation light

Closed dewar

Both the US and EU/Japan are working towards solving the R&D issues needed for ~100kton detectors.

Single Volume

From Palamara

LAR Reconstruction

Examples from ArgoNeut

Icarus T600 test from 90s was The first real large scale test of Automatic reconstruction.

Now groups are working on reconstruction in new detectors.

Example of sensitivity to nuclear effects.

SK proton ID algorithm from SK for future projects From Walter

This technique gives good energy resolution, high CCQE purity and neutrino tagging.

Let V be the 4-vector

$$V = P_p + P_l - P_n,$$

where P_p , P_l , and P_n are the 4-momenta of the proton, lepton, and target neutron.

Lorentz invariant quantity V^2 must be $m_{\nu}^2 \approx 0~{\rm eV^2/c^4}$

Good for Wideband beams and high Energy beta beams.

Liquid Scintillator for high energy beams

From Russo

Peanut

Hybrid detector: Emulsion-lead targets and scintillating fibre tracker (SFT detector)

Fully reconstructed event

Beam Flux Systematics

Measurements of the event rate in the muon monitors were used to tune the beam MC to make flux measurements.

From Loiacono

My Conclusions

- There is a lot of activity on future detector design.
- A few of the "homeworks" from last year have been addressed.
- Many of the outstanding questions can't be addressed yet because the reconstruction and simulation work is not yet at a mature level.